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lat i tude in successive rings from the N pole to the S 
pole, is thus the most concise description. There not 
being strict proofs of the absoluteness of the maxima 
encountered,  there remains, in many cases, the doubt  
as to whether some solutions of low symmetry  may not 
be better. Clearly the most symmetrical  figures are the 
most  easily calculated and are unduly preferred. 
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A derivation is given of the probability distribution of the phase of a triple product ¢p = ~Phl +~0h2 +q~h3 
with h l + h2 + h3 = 0, employing a priori structural information. This derivation is valid if normalized group 
scattering factors are small and certain conditions for ht, ha, h3 are fulfilled. To derive this distribution it is 
necessary to regard the atomic position vectors as primitive random variables, not all independent in view 
of the structural information. It is also shown that if no structural information is available the expression 
for the probability distribution of the phase of a triple product, where the atomic position vectors are 
regarded as the primitive random variables, is identical to the one where hi, ha, h3 are regarded as the primi- 
tive random variables. In the first case certain conditions for h~, h2, h3 must be fulfilled; in the second the 
atomic position vectors are subject to certain conditions. 

Introduction 

Recently Main (1975) has generalized Cochran 's  (1955) 
formula for the phase probabi l i ty  of a triple product.  
In Main 's  formula a priori knowledge about  the 
structure can be used. The kinds of information which 
he has considered are (a) randomly  posit ioned atoms, 
(b) randomly  posit ioned and randomly oriented atomic 
groups, (c) randomly  posit ioned but correctly oriented 
atomic groups, (d) correctly positioned atoms. 

A rigorous mathemat ical  derivation of Main 's  
formula, which also shows its limitations, will be given 
for space group P1. 

The primitive random variables 

In this section we define the normalized structure factor 
for equal-a tom structures by 

1 n 
Eh -- NIl2 ~ exp (2nih. r~), (1) 

j = l  

where N is the number  of a toms in the unit cell and 
r~ is the position vector of a tom j. In deriving joint  
probabi l i ty  distr ibutions of structure factors defined 

by (1), two methods  can be followed. The first is to 
regard the structure as fixed, a l though unknown,  and 
one or more  reciprocal lattice vectors as the primitive 
random variables. The second is to regard the atomic 
posit ion vectors as the primitive random variables and 
the reciprocal lattice vectors as fixed. 

Let ~0h denote the phase of Eh and let P(cb]R~, R2, R3) 
denote the condit ional  probabil i ty  distr ibution of 
q)=q)hl -~-q)h2-'~-qgh3 with hi +h2+h3=0 ,  given ]Ebl], 
]Ehz] and [Eh3J (equal to R1, R2 and R3 respectively). 
Then P(cI)IR1,Rz,R3)dq~ is the probabil i ty that q~ lies 
between 4~ and q)+d4~, given [Ehl[, ]Ehzl and JEh3l. If 
the reciprocal lattice vectors hi,  h2 and ha are the 
primitive random variables, P(cI)JR 1, R2, R3)dq~ is equal 
to the fraction of the triple products  EhlEh2Eh3 of a 
fixed structure and with fixed values for ]Ehs I, [Eh2l and 
IEh3[, for which 4:, < g, < 4~ + d4~. If the atomic position 
vectors rj are the primitive random variables, 
P(4)IRx,Rz, R3)d@ is equal to the fraction of the triple 
products  EhlEhzEh3, with hl,hz,h3 fixed, of all struc- 
tures with N atoms in the unit cell and with fixed values 
for [Ehl], [Eh2 [ and [Eh3l, for which ¢b < q) < ¢b+ dcb. 

It has been found that with hi, h2 and h3 as the 
primitive random variables the only information 
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about the structure which enters P(crPlR1,R2,R3) is 
the number of atoms in the unit cell (Hauptman, 1975). 
If hi is fixed and h2 and h3 are the primitive random 
variables (h 3 = - h  1 -h2),  the number of atoms in the 
unit cell and IEhll, which depends on the structure, 
appear in P(~olhl, R2, R3) (Hauptman, 1975). However, 
a priori structural information, e.g. knowledge that 
there is a special group of atoms, does not alter these 
distributions. In the approach where the rj's are 
regarded as the primitive random variables such a 
priori information can be used. For example, suppose 
that the structure contains a benzene ring. Then only 
the position vector and orientation of the benzene ring, 
instead of the position vectors of the atoms of the 
benzene ring, form part of the primitive random vari- 
ables. If nothing else is known, i.e. the position vectors 
of the other atoms in the unit cell are also primitive 
random variables, then P(crPIR1,R2,R3)d~ is equal to 
the fraction of the triple products EhlEh2Eh3 , with 
hi, h2, h3 fixed, of all structures containing a benzene 
ring, with N atoms in the unit cell and with fixed values 
for IEh~], ]Eh2l and ]Eh3], for which qb<(p<tb+dqS. 

The phase of a triple product is independent of the 
position of the origin of the unit cell. This implies that 
in the derivation of the phase probability of a triple 
product we may add the origin of the unit cell to the 
set of primitive random variables, or alternatively, we 
may add the position vector of the group of correctly 
placed atoms to the set of primitive random variables. 
This last approach simplifies the calculations and will 
be adopted. 

The structure factor 

Define the structure factor F h by 
p 

Fh = ~ gj(h) exp (27rih. rj), (2) 
j = l  

where for l<_j<_pl the rfs are the atomic position 
vectors and the gj(h) are the scattering factors )~(h), 
and for p l + I < - j < - P  the rj's are the group position 
vectors and the gj(h) are the group scattering factors. 
Next define the normalized structure factor Eh by 

Fh 
Eh---= ( ~ 2, ,1/2 , (3) 

l h  /p.r .v.  

where <lFhl2>p.r.v. denotes the average of IFhl 2, the 
variables being the primitive random variables (p.r.v.): 

(a) 1 <j<p~,  the atomic position vectors 

(b) p~ + 1 <J<P2, the position vectors and 
orientational parameters of the groups 

(c) P2 + 1 < j < p ,  the position vectors of the 
groups with known orientation (this (4) 
includes the position vector of the group 
with known orientation and known po- 
sition; see the preceding section). 

It can be shown that the average of [Fh] 2 is 
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Pl 
<[Fhl2}p.r.v. = ~ gj(h) 2 

j = l  
P2 p 

+ ~ <lgj(h)12>or~ent + 2 Igj(h)l 2. (5) 
J = P l  + 1 J = P 2  + 1 

The expressions for the individual terms (Main, 1975) 
are calculated by 

(a) 

(b) 

1 Nj Npl,  gj(h)=J~(h) (6) 

Pl + 1 Nj_<p2, (Igj(h)12)or~e., 

= ~ ~ f/l(h)j~2(h) sin 2nqril~2 (Debye, 1915) (7) 
i2 2rcqri i i2 

(c) P2 + 1 ~j_<p, Igjh)l 2 

= ~  ~f/l(h)f/2(h)cos27rh.rili  2, (8) 
il  i2 

where the Z's denote summations over the atoms of the 
jth group, q is the magnitude of h and rili2 is the 
magnitude of r / l iE  = ril - ri2. 

In the calculations which are given in the next sec- 
tions, we use normalized structure factors. It must be 
stressed that normalized structure factors are only 
used to simplify the calculations and the resulting 
formulae for the probability distributions. For the same 
reason we introduce the normalized scattering factor 
tj(h), defined by 

tj(h) = gj(h) 2 I / 2 -  (9) 
(IFhl >p ..... 

Denote the absolute value and phase of tj(h)by uj(h) 
and fit(h) respectively, 

t j(h) = uj(h) exp [iflj(h)]. (10) 

From (5), (9) and (10) the following relation between 
the uj(h) is obtained, 
Pl P2 p 

~uj (h )2+  y' (uj(h)E}orient+ }-" uj(h)2=l. (11) 
j =  1 J = P l  + 1 J = P 2  + 1 

From (2) and (9) the normalized structure factor, as 
defined in (3), can be written as 

p 

Eh = ~ tj(h)exp (27zih. r j), (12a) 
j = l  

or, from (10), 
p 

Eh=  ~ uj(h)exp {i[2r&.rj+flj(h)]}. (12b) 
j = l  

The conditional probability distribution 
of q) = q)hl 4" q)h2 4" q)h3 

Denote by P(R1,R2,R3",@I,crp2,~3) the joint prob- 
ability distribution of the magnitudes [Ehll, [Eh2], 
IEh3[ and the phases q)hl ,  (Dh2, ~h3 ,  where hi +112 +h3 = 0  
and the primitive random variables are given in (4). 
Then, from Appendix II, P(R1,R2,R3;@I,qb2,@3) is 
given by 
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P(R1,R2, R3; ~ i ,  t~2, ~)3) - 

where 

R1R2R3 fff f:f:nexpl-iv~=lRvQv(Ov(I)v)l (27~) 6 f : f :~ f : ~  3 cos - 

X [  1-~Ij=l qJ(Ql'~2'~3;Ol'O2'O3)lQlQ203dQldOldQ2dO2dQ3d03' (13) 

qJ(Ql'Q2'Qa;Ol'O2'O3)=(expIi ~=~uj(hv)0~c°s[2rchv'rJ+flJ(h~)-O~]}lpl .r.v. j" (14, 

The random variables for group or atom j (p.r.v.j) are given in (4). Appendix III contains the calculation of the 
average in (14) for all j, and the calculation of the product of the qfs. The result is 

where 

P 2.+. 2". H qj(ol,e2,Q3 ;01, 02, 03)~exp  [ --¼(02 -}- e2 03)-- ¼iQ 1230102e3 COS (01 + 02 + 03 -- q123)], j= l  

Pl P2 
Qa23 exp (iq123) = ~ ts(hl)ts(h2)tj(h3)+ 

j= l  j=p l+ l  
In the derivation of (15) it is assumed that the ug(h) are small and that 

h i # 0  i =  1,2,3, 
h #hi  2 and 2hi l#hi  2 i1,i2=1,2,3 i1~i2. 

The expressions for the individual terms in (16) are 

fj(h ~)j~(h2)3~(h3) 
(a) I<--J<Pl, tj(hl)tj(hz)ts(h3)= 2 1/2 2 1/2 2"31/2 

<lFhll )p.r.v.<lFh2[ )p.r.v.(IFh3[ /p.r.v. 

p 
(tj(hl)tj(h2)tj(h3))oriem + E 

j=p2 + 1 

(15) 

tj(hl)tj(h2)tj(h3). (16) 

(17) 

(18) 

~ ~ J~l(hOJ~2(hz)f~3(h3)B(z, t) 
il i2 i3 

(b) Pl+I<-j<P2, (tj(hl)t~(hz)tj(ha))orie,t= <]Fhl 2"51/2/p.r.v.(IFh2 2"31/2/p.r.v. <]Fh 3 2"31/2/p.r.v., (19) 

where B(z, t), the orientational average of exp [2zri(hx. rixi3 + hE. ri2i3) ], has been calculated by Hauptman (1965). 
His result is given in Appendix VI. 

.~ .~ E fl(hl)J]2(h2)~3 (h3) exp [2xi(h 1 . rili3 + hE. ri2i3) ] 
(C) P2+  l<j<p, tj(hl)tj(hz)tj(h3)= zl ~2 i3 

] )p.r.v.(]fh2] )p.r.v.(]Fh3 /p.r.v. (]Fh 1 2 1/2 2 1/2 2"31/2 (20) 

Appendix IV contains the calculation of the integral in (13). The result is 

P(Ra,RE, R3 ;@1, ~2, tb3) ~- R1R2Ra rc 3 exp[-R2-R2-R2+ZQ~z3RIRzR3cos(cbl+~2+cb3-q123)].  (21) 

The conditional probability distribution P(cbJR 1, R2, R 3) 
for the phase q~ = q~hl + ~0hz + q~h3, given IEhl[, [Ehz[ and 
fEh3[, follows directly from (21), 

1 
P(cb[R 1,R2,R3) ~, ~exp [2Q t 23R 1RER3 cos (qb -- q 123)], 

(22) 

where L, the normalizing constant, is calculated from 
(i.8), 

L = 2Zdo(2Q 123R IRzR3). (23) 

(22) was first given by Main (1975) as a generaliza- 
tion of Cochran's (1955) formula. Our derivation for 
space group P1 shows that for this space group the 
generalization is correct, but an important observa- 
tion is still to be made. Our derivation is only valid if 
the uj(h) are small. This implies that, if the orientation 

of a large part of the contents of the unit cell is known, 
(22) is not correct: higher-order terms should be in- 
cluded. A formula which is correct for all values of the 
uj(h) should give a delta function centred on q~ = q~ for 
the case that the whole structure is known. For this 
case (22) gives 

P(~IR1 = R2 = R3 -- Q123 = 1)-~ 
exp [2 cos ( ~ -  q~)] 

27zlo(2) 

(24) 

This distribution has its maximum at q~ = q~ and half 
its maximum values at • = ~o +_ 49 °. This clearly shows 
the limitations of (22), and suggests that (22) gives an 
underestimate of the probability that the phase of a 
triple product is equal to q123, especially when the 
orientation of a large part of the contents of the unit 
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cell is known. Main (19.75) stated that the atoms with 
known positions should give no contributions to the 
([Fh[ 2) in Q123. Then (22) indeed becomes a delta 
function for the case that the whole structure is known. 
In this way a better value for the phase probability of 
a triple product may be obtained. Our calculations are 
not valid for this case and therefore cannot give a 
justification or rejection of this procedure. In this 
connexion we note that Kroon & Krabbendam (1970) 
derived for space group P1 the sign probability of a 
triple product, orientational information taken into 
account. They used Wilson statistics, regarding the 
peak positions in the double Patterson synthesis as 
independent random variables, except for the peak on 
the origin and the peaks known from the orientational 
information. After applying the central limit theorem 
they obtained an expression [their formula (6)] which 
leads to a delta function in the case that the whole 
structure is known. 

No specific structural information 
If no specific structural information is known, then 
from (5), (6), (16) and (18) it follows that 

N 

J)(h 1)fj(h2)fi(h3) 
j = l  

23 2-]1/2 2-]1/2 2-]1/2 

and (25) 

q123 = 0 ,  (26) 

where N is the number of atoms in the unit cell. Next, 
assuming that all atoms have the same unitary scat- 
tering factor f(h) [Lipson & Cochran (1968), pp. 74- 
75-1, we write 

f j ( h )=Zj f (h ) ,  (27) 

where Zj is the atomic number of atom j. From (22), 
(23), (25) and (26) we find 

exp 2 ~ R1R2R3 cos q~ 

p(qgIR1,R2, R3) ~ , (28) 
2rcI0 2 ~ R 1 R 2 R 3  

where 
N 

a, = ~ Z 7. (29) 
j = l  

In the case that the structure consists of non- 
vibrating point atoms, tj(h)=Zj/6~/2, we also obtain 
(28). In Appendix V it is shown that the formula for 
the phase probability of a triple product for structures 
consisting of non-vibrating point atoms, derived on 
the basis that the reciprocal lattice vectors h 1, h2, h3 are 
the primitive random variables, is the same as in the 
case that all the atomic position vectors are the primi- 
tive random variables. So in both cases (28) is obtained. 
[For equal atoms, ffa/ff3/E=l/N 1/2, (28) reduces to 

formula (3.4) of Hauptman (1975), which has been 
derived on the basis that hi,hE, ha are the primitive 
random variables.] However, the conditions are dif- 
ferent (apart from the condition that the Zi/a~/2 are 
small, which must hold in both cases): (a) in the case 
that the atomic position vectors are the primitive 
random variables the conditions are given in (17); 
(b) in the case that hl,h2,h3 are the primitive random 
variables the condition is that there are no integers m j, 
not all zero, such that 

N 
mjr j=r ,  (30) 

j = l  

where the components of r are integers (Appendix V). 
More elaborate calculations than those given in Appen- 
dix V show that the condition for the rfs is too stringent. 
They suggest that it is sufficient if there are no integers 

N N 

mj, not all zero and for which ~ m j = 0  and Y" Imjl_<m, 
j--1 j = l  

m small but larger than 3, such that (30) holds. The 
N 

condition ~ m j = 0  is a consequence of the fact that 
j = l  

q) ~ q)hl "+- (])hE + (Dh3 is independent of the choice of t h e  
N 

origin, and ~ Imj]-<m expresses the fact that atomic 
j = l  

position vectors which are interrelated by (30) such 
N 

that ~ [mj[ is not small, only affect higher-order terms. 
j = l  

Conclusions 

A formula for the probability distribution of the 
phase of a triple product, in which a priori structural 
information is used, has been derived [formula (22)]. 
It was argued that this formula gives an underestimate 
of the probability that the phase of a triple product is 
equal to q123 [q123 in (16)], especially if the orienta- 
tion of a large part of the contents of the unit cell is 
known. In deriving this distribution it was a require- 
ment that the atomic position vectors be regarded as 
the primitive random variables. In view of the a priori 
structural information these primitive random variables 
are not all independent. 

We have also shown that if no structural information 
is available this formula reduces to (28), which is iden- 
tical to the one obtained with hl,h2,h3 (subject to 
h l + h 2 + h 3 - - 0 )  as the primitive random variables. 
However, it is stressed that the conditions are dif- 
ferent [cf (17) with (30)]. 

It is anticipated that the procedure adopted in this 
paper can be used to include a priori structural informa- 
tion in the probability distributions of the phases of 
other structure (sem)invariants. 

The author thanks Drs J. Kroon and H. Krabben- 
dam and Professor A. F. Peerdeman for stimulating 
discussions and critical reading of the manuscript. 
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APPENDIX I 

Some formulae 
Bessel functions 

From [Watson (1966), p. 22, formulae (3) and (4) 1 

exp (iz cos ¢p) = Jo(z) + 2 ~ i"J,(z) cos rap, (I. 1) 
n = l  

where J,(z) is the Bessel function of the first kind of 
order n, and [Watson (1966), p. 15, formula (2) 1 

J_,(z) = ( -  1)"3,(z), (I. 2) 

we find 

exp (iz cos qg) = ~ i"J,(z) cos no. (I.3) 
n =  - - 0 0  

The expression for J,,(z) in the form of an ascending 
series of powers of z is [Watson (1966), p. 15, formula 
(1)] 

~, ( _  1),,(½z),+ 2m 

Jn(Z)-~- m=0~ m i ~ - - m ) ( '  n > 0 .  (I'4) 

The integral for Jo(z) [Watson (1966), p. 20, formula 
(5)] written as 

Jo(z) = ~ exp ( -  iz cos ~0)d~o (I -5) 

and [Watson (1966), p. 393, formula (1)1 

Jo(at) exp ( -  p2t2)tdt = ~ exp - ~ (I. 6) 

lead to 

1 exp ( -  pZt2 _ iat cos q~)tdtdq~ 
2re 

1 ( °~ ) 
=~p-~p2eXp-~p-~p2. (I-7) 

From (I'5) and the definition of Io(z), the modified 
Bessel function of the first kind of order zero [Watson 
(1966), p. 77], it is found that 

1 f2 exp Io(z) = ~ (z cos tp)dcp. (1"8) 

A trigonometric formula 
From elementary trigonometry (Hauptman, 1971) 

~iAi COS ((p -a t- 0~i) --" X c o s  ((p + ~),  (I "9) 

where 

and 

X = [ 2  ~ .  AiAjcos (oq--o~j)] 1/2 (1" 10) 
i j 

cos ~ = X -  1 ~ Ai cos 0~1 (I" 11) 
i 

sin { = X -  1 ~ Ai sin cq. (I. 12) 
i 

APPENDIX II 

The derivation of (13) 

Denote by P(X1,Xz, X3;Y~,Y2, Y3) the joint prob- 
ability distribution of the real and imaginary parts, 
Ahl,Ah2, Ah3, Bhl,Bhz, Bh3, of Ehl, Eh2 and Eh3. Then 

1 P(XI,Xz, X3; }11, Y2, Y3) -- (2TC)6 

x ... exp - i  (X~x~+ V,,y~) 
- - o 0  - - o 0  V = I  

X Q(xI,x2,x3 ;yl,Y2,Y3)dxldx2dx3dyldy2dy3, 
(1I- 1) 

where the characteristic function 

Q(X1,X2, X3 ;Yx,Yz, Y3) 
. . . .  exp i (X~x~ + Yvy~) 

- -oO - - ~  v = l  

x P(X1,X2,Xa; Y1, Y2, Y3)dXldX2dX3dYldY2dY3 

={exp[ivZ=l(Ahvxv-FBh,'Y")l)p.r.v. 

= exp i 2 {uj(h,.)x~ cos [2rchv. U+ fl~(h,.)] 
v = l  \ \  

+uj(h~)y~sin[2rch~'u+fl~(h~)]})~ ..... • (II.2) 

Next, using the transformations 

X~ = Rv cos 45,,, Y~ = R~ sin 4~,., (II. 3) 
and 

x~ = 0~ cos 0~, Y~ = 0~ sin 0~, (1I-4) 

we obtain, analogous to the derivation of formula 
(3.1.7) of Karle & Hauptman (1958), 

RIR2R3 
P(R1,Rz,R3;~I,q~2,cb3) - (2rt)6 

V 3 
x f : f i ' ~ f : f : ~ f : J o  exPL--i,~=lR~'o,'c°s(O,'--dP~') 1 
x Q(01,~02, 63 ;Oa, 02, 03)o~ao203do1dOldo2dO2do3d03, 

(II-5) 

where 

Q(ot,Q2,03;Ol,02,O3)= lj~= lexp {i ~1uj(hv)~v 
\ 

r, + L v  
. )  

The primitive random variables are given in (4). 
Denoting the random variables for group or atom j by 
p.r.v, j, we obtain from (II.6) 

Q(Q1,0>03;01,0>03)=.= exp i ~= uj(h~)ov 

x cos [2rthv.rj+ flj(h,,)-0~]})p . . . .  ,.j. (II" 7) 
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A P P E N D I X  I I I  
p 

The calculation of H qj(Q1,Qz,Q3 ;01,02,03) 
j = l  

First we consider Pl + l~_j~_p2. From the result for 
this case, those for l~_j~_pl and p2..[+l~j~p are 
easily obtained. 

qj(o1,O2,Oa;O1,02,03)= (exp f i L uj(hv)o,.v 
_ . v = l ) \  

x c o s  [2~k. r j +  flj(hv)-Ov] ~) 
)/rj ,  orient. (III" 1) 

Expand the exponential in Bessel functions, using (I" 3), 
GO 

qJ (01'02'03;01'02'03)= ~ Z ~ inl+nz+n3 
nl=-OO n2=-oo n3=-oo 

× (Jnl [uj(h 1)01 ]Jnz[uj(h2)Oz]J,3[uj(h3)P3] 
x (cos nl[27rhl, r /+  fli(hl)-01] 
x cos nz[2zrh2, r j+  flj(h2)- 02] 

x cos n3[2rch3, rj+flj(h3)-03])rj)ori~nt. (III '2) 

The product of three cosines in (III" 2) can be written as 

¼ Z Z cos {nlEflj(hl)-O1-]+eln2[flj(h2)-02] 
el 02 

+ e2n3[flj(h3)-O3] + 2x(nlhl + 81n2h2 + 82n3h3). rj}, 
(III-3) 

where 81 and 82 take the values - 1  and 1. Averaging 
(III" 3) over r j, we obtain 

¼ Z Z cos {nlEflj(hx)-01] + e.ln2Eflj(h2)-02] el e.2 
+ eEna[flj(ha)-Oa]}6(nlhl + eln2h2 + eEn3h3), (III '4) 

where 3(n) = 1 if n = 0 and 6(n) = 0 if n # 0. From (I" 2) 
and (I-4) it follows that J,,(z)=O(zl"l). We shall only 
consider terms with uj(h 1)l" ~1 uj(hE)[n2 [uj(h3)[n 3[ for which 
[nl]+[nE[+[n3[<3. If hi,h2,h3 are such that for 
In 11 + I n2l + In3[ _< 3, n lh 1 + e I r/Eh2 + 82/'/3h3 ~ 0 except for 
nl  =~1r/2  = ~ 2 n 3  = 0 , -  1, 1 then, using (I'2), we find for 
q/(01,02,  03 ;01 ,02,  03) 

qj(01,02,03 ;01 ,02 ,03)  

~- ( Jo[uj(hl)o1]Jo[uj(h2)&]Jo[uj(ha)O3])ori~nt 
- 2i(J1 [u j (h  1 )01-]J1 [uj(h2)o2]J1 [uj(h 3)0 3] 
X COS [ f l j (h l )  + flj(h2) + f l . f (h3)-  01 - 02 - 03])orien t. 

(III.5) 
Next we employ the expansion (I.4), 

qj(01,02, 03 ; 01,02,  03) 
" 1  1 2 2 2 2 
--  - ~ : [ ( u j ( h l )  )orient01 + ( u j ( h 2 )  )orient02 

+ (uj(h3)2)o.~n,O 2 ] - ¼ i ( u j ( h l ) u ~ ( h 2 ) u j ( h 3 ) o 1 0 2 0 3  

x cos  [fl~(hl) + fit(hE) + f l j ( h 3 ) -  01 --  02 -- 03])orien t . 

(iii.6) 
The condition for hl,h2,h3, as mentioned above, can be 
given in a simpler form, viz rnlhl +m2h2 +m3h3 # 0  for 

[mll+lm2l+lm3]<3 except ml =m2 = m 3 - - 0 , -  1,1, or" 
hi # 0  i=  1,2,3, hi1 #hi2 and 2hil :/:hi2 ii,i2= 1,2,3 
il :~ i2. 

For 1 <J<Pl there is no orientational average and 
flj(h)=O, 

q j(01,02,03 ;01 ,02 ,  03) 
"~1 1 2 2 uj(h2)2022+ - -~:[-uj(hl) 01 + uj(h3)2O~] 
-liuj(hl)uj(h2)u~(h3)ol02Q3 cos (01 + 02 + 03). (III" 7) 

For P2 + 1 <_j<_p there is no orientational average, 

qj(01,02,03;01,02,03) 
~ 1  1 2 2  --  - g E u j ( h l )  01 + uj(h2)2022 + u j ( h 3 ) 2 0 ~ ]  

-- ¼iuj(h1)uj(h2)uj(h3)010203 
× cos [flj(hl)+ flj(h2)+ f l~ (h3) -01-02-03] .  (III. 8) 

(III-7) and (III.8) are subject to the same conditions 
for hl,h2,h3 as (III "6). 

From (III-6)-(III-8), (10) and (11) we calculate, 
following Hauptman (1971), 

p 

I-I qj(o 1,02, 03 ; 01,02,  03) 
j = l  

=explj=Lllogqj(01,02,03;01,02,03) ] 
1,2+ 2 -~exp [ - -2~01 02--[--02) 

-¼iQ123010203 cos (01 +02+03-q123)], (III '9) 

where Q123 exp (iq123) is given by (16). 

A P P E N D I X  I V  

The integrations in (13) 

First combine the terms which depend on 01 and 01, 

1 2 2~01 +iRl01 COS (01 -- t~)l) 

+ ¼iQ123010203 COS (01 -'[" 02 "[- 03 -- qa 23) 
1 2 =~01 + iX101 cos (01 + ~1), (IV. 1) 

where, from (1-9)-(I-12), X1 and ~1 do not depend on 
01, and 

X2 -~ R2 + ½Q 123 R 10203 COS (t~ 1 At- 02 + 03 -- q123). 

(IV. 2) 
Next, using (I. 7), we obtain 

P(R1,Rz, R3;gPa,C])E, tI)3)- R1RzR3 
(270"n 

f:f: f:f2  x exp( - R2) 0 exp {i[REOECOS(O2-¢'2)- 

+ R3Q 3 cos  (03 - (~3)] --~0 2 + O~)-½Q 123 R 10203 

X COS ((I) 1 --[--02--[--03 -q123)}OzO3dOzdOzdO3dO 3 . (IV" 3) 
For 02,02 and 03,03 we follow the same procedure. 
Combine the terms which depend on 02 and 02, 
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1 2 ( 0 2 -  42) ;~2 -+- iR2Q2 COS 

+½Q123R10203 cos  (41  +/92 + 03 - q123) 
_ 1 2 (02 + ¢2) ,  ( IV-  4) --;~2 + iX2Q2 COS 

where 

XE~_R 2 --iQ123RIR2Q3 cos  (41-{- 42  "~-03 -- q123). 

(IV. 5) 

After integrating with respect to Q2 and 02, we obtain 

P(R1,R2,R3;41,42,43) ~_ R1R2R3 (2n)2n----- ~ exp ( - R 1 - RE) 

× [-- iRaQ 3 COS (03 -- 43 )  --~Q312 

+ iQ123RIREQ3 cos (41 + t~) 2 -[- 03 -- q123)-]Q3d~3d03 • 
(IV .6) 

Combine the terms which depend on Q3 and 03, 

1 2 (03 4 3  ) ~3  ']- iR3Q3 cos  -- 

--iQ123R1REQ3 cos  (41  + 4  2 + 0 3  - q 1 2 3 )  
_ 1 2 • (03 --{- ~3), ( I V .  7) --~.Q3 + lX3~3 COS 

where 

XE~-R2-2Q123R1R2R3 COS (41 + 42 + 43--q123 ). 
(IV. 8) 

Finally, the integrations with respect to Q3 and 03 are 
carried out. The result is given by (21). 

APPENDIX V 

h~, h2, h3 or all the atomic position vectors as the primitive 
random variables 

The calculations in Appendix II up to and including 
(11-6) are also valid in the case that hx,h2,h3 are the 
primitive random variables. For structures consisting 
of non-vibrating point atoms, uj(h)=ZHa~/z and 
fir(h) = 0, we find from (II. 6) 

Q(Q 1,02, Q3,01,02,  03) 

e~ cos (2nK. r j -  0v) = exp l ~  v=x .r.v.' 
(v-1) 

where the primitive random variables are the atomic 
position vectors or the reciprocal lattice vectors. If the 
atomic position vectors are the primitive random 
variables, then from (V. 1) [or (II. 7)-I 

Q(Q1,Q2,Q3;01, 02, 03) 

=~=1 exp, z a2-~/2 v=l& cos (2nK. r j -  0~) . (V. 2) 

If the reciprocal lattice vectors are the primitive random 
variables and if there are no integers m r, two of them 

N 
not zero, such that ~ m~rj= r, where the components 

j = l  

of r are integers, then from (V. 1) 

Q(Q1,Q2, Q3;01 ,02 ,03)  = exp i ~ 0v 
j = l \  . k ~,2 v=l 

x cos (2nK. r j -  0~)]~ (V" 3) 
_]/hl ,h2,h3 

h l + h 2 + h 3 = 0  

As can be seen from the calculations in Appendix 
III, (V. 2) and (V. 3) lead to the same result if in the case 
that the rj's are the primitive random variables certain 
conditions for hl,h2,h3 are fulfilled and if in the case 
that hi, h2, h3 are the primitive random variables there 
are no atoms with three rational coordinates. Having 
found that the resulting formulae for the Q's are the 
same, it follows that both approaches lead to the same 
expression for P(4IR1,R2,R3). 

APPENDIX VI 

The B(z, t) formula 

The average of exp [2ni(hl. rili 3-[-h2.ri2i3) ] over all 
orientations of the triangle formed by the atoms il, i2 
and i 3 has been calculated by Hauptman (1965). His 
result, denoted by B(z, t), is 

/ ~ \ 1 / 2  oo t2n 

\ / 

where 

z=2n(qar a +2qrqlr I cos q~q cos ~or+qlarla) 1/2, (V1.2) 

1 
t = - 2n2qrqXr 1 sin q~q sin ~0r, (VI- 3) 

Z 

and J(4n+ x)/a(Z) is the Bessel function of the first kind 
[Watson (1966), ch. Ill-], q, ql, r and r ~ are the 
magnitudes of hi, ha, rili3 and riai3 respectively, qgq is 
the angle between hl and hE and qg, is the angle be- 
tween ril/3 and r/aiy A table of values of the function 
B(z, t) has been published by Hauptman (1964). 
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